SWIM and Horizon 2020 Support Mechanism

Working for a Sustainable Mediterranean, Caring for our Future

Biological Treatment

Presented by:

Dr. Ahmed Gaber, Professor of Chemical Engineering, Cairo University and Chairman, Chemonics Egypt Consulting

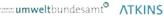
> Leachate Management Training Program June 25th-29th, 2018, Beirut, Lebanon

This Project is funded by the European Union

Lecture

4

ACR+


SEMIDE

Outline

1.Introduction
2.Classifications
3.Basic Steps
4.Selected Biological Treatment Processes
5.Performance

Introduction

- Biological treatment is very effective at reducing high-strength biodegradable components
- Broadly speaking, divided to aerobic and anaerobic technologies
- Majority of leachate treatment schemes that have been successfully installed in landfill sites are anaerobic biological processes.
- The drawbacks generally experienced in biological treatment originate from operational problems such as foaming, metal toxicity, nutrient deficiency and sludge settling.
- Among the various biological treatment processes, Sequencing Batch Reactors (SBRs) has been to be proved a reliable and robust method for leachate treatment.

Definitions

BOD Biochemical oxygen demand:

A BOD5 value, the biochemical oxygen demand during a 5-day sampling period under standard conditions, expresses the amount of oxygen needed by aerobic micro-organisms to break down organic material. It is one of the so-called 'aggregate parameters' in that it does not allow the degradation of single compounds to be determined.

Chemical oxygen demand:

The Chemical oxygen demand, or COD, is another one of the so-called 'aggregate parameters' as it does not allow for the quantification of individual compounds. It is determined by means of oxidation of the sewage contents by potassium chromate and measures the oxygen demand for oxidizing a majority of organic substances. If there are also oxidizable inorganic compounds, such as sulphites, in the sewage, these are also entered as the COD.

Nitrogen:

Nitrogen normally appears in untreated sewage in the form of an organic compound (for example in proteins, nucleic acids, urea) in the form of ammonia ions (NH4+) and in small proportions also in the form of nitrate (NO3-) and nitrite ions (NO2-).

Biological Treatment Classification

ystems with suspended-growth biomass	Systems with attached/immobilized biomass	
Activated sludge (AS):	Filters:	
 Continuous flow reactors 	Upflow system	
· Sequencing batch reactors (SBR)	Downflow system	
Membrane bioreactors (MBR):	Fluidized bed:	
• External membrane module	Sand carrier of biomass	
Submerged/Immersed membrane module	 Activated sludge carrier of biomass 	
	Upflow anaerobic sludge blanket (UASB):	
	• Expanded granular sludge bed (EGSB)	
	Moving bed bioreactors (MBBR)	
	Rotating biological contactors	

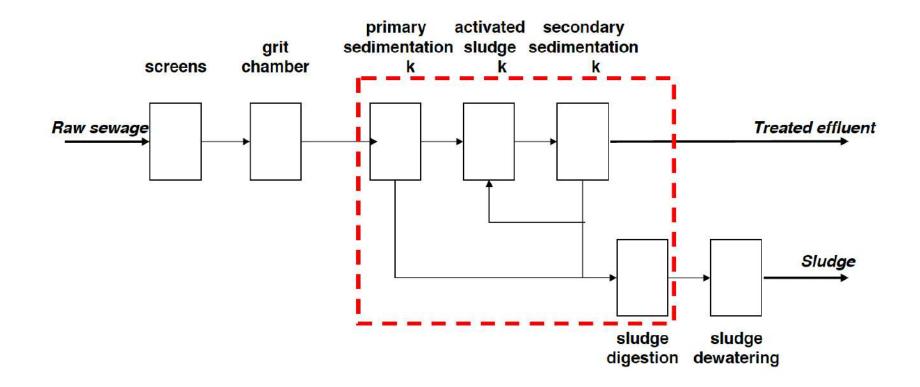
Source: Gotvajn, A. Z. and Pavko, A., Perspectives on biological treatment of sanitary landfill leachate

Biological Treatment Applications (1)

Biological processes	Application	Comments	
Aerobic system	Removal of organics	Refractory or slowly degrading compounds are not removed. Process cannot tolerate influent toxics. Biological sludge is produced. Needs separate clarifier.	
Aerated stabilization ponds (lagoons)	Removal of organics	Requires large land area.	
Fixed-film processes (trickling filters, biological contractors)	Removal of organics	Temperature-sensitive in cold weather. Cover may be needed.	

Source: Kostova, I., Leachate from sanitary landfills- origin, characteristics and treatment, July 2006

Biological Treatment Applications (2)

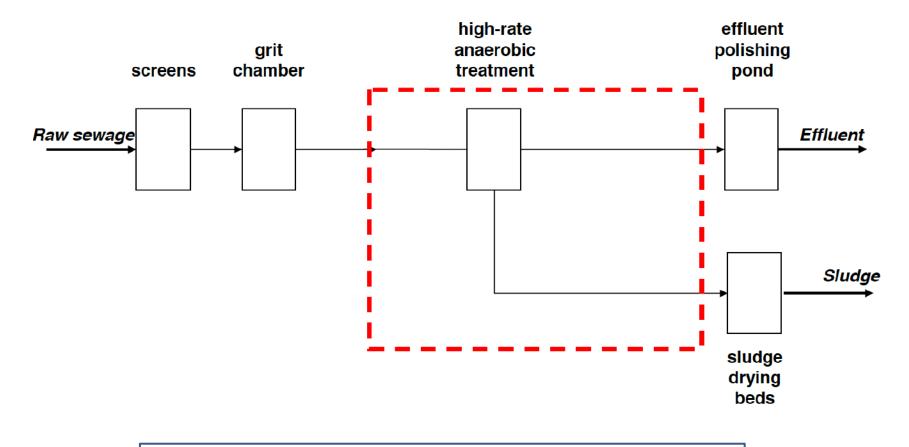

Biological processes	Application	Comments
Anaerobic systems (anaerobic contractors and lagoons)	Removal of organics	Low operating costs and sludge production. Requires heating. Long detection times for high removal levels. Typically cannot tolerate influent toxics or high concentrations of some inorganics.
Nitrification and denitrification	Removal of nitrogen	Nitrification/denitrification can be accomplished along with removal of organics.

Source: Kostova, I., Leachate from sanitary landfills- origin, characteristics and treatment, July 2006

Basic steps in aerobic treatment

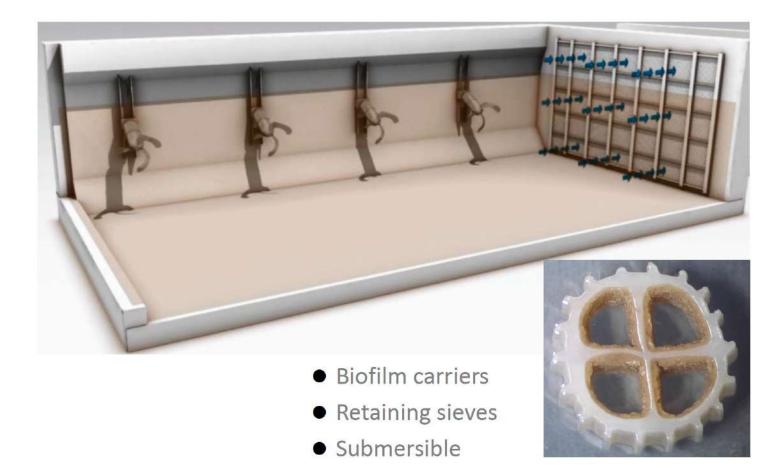
Source: Lettinga Associates Foundation, Delft University of Technology, November 2010

Key elements in aerobic bio-reactor



Source: Ping, K., Veolia, Wastewater treatment technologies, December 2013

Basic Steps of anaerobic treatment



Source: Lettinga Associates Foundation, Delft University of Technology, November 2010

Key elements in anaerobic bio-reactor

Source: Ping, K., Veolia , Wastewater treatment technologies, December 2013

Solid separation in a biological treatment plant

Conventional Clarifier

Dissloved Air Floation (DAF)

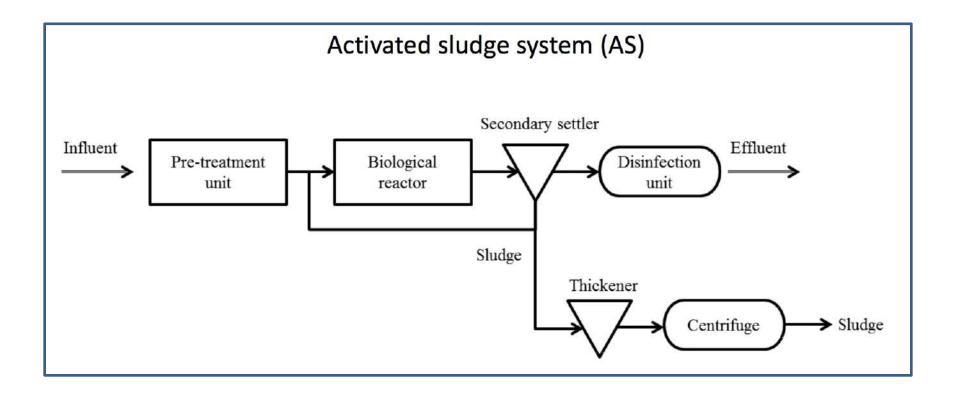
Lamella Plate Settler (Multiflo / Actiflo)

Source: Ping, K., Veolia , Wastewater treatment technologies, December 2013

Activated Sludge

4. Selected Biological Treatment Processes

- The activated sludge process can successfully treat BOD, TSS and ammonia.
- To incorporate nitrification with BOD removal, the conventional activated sludge process requires the addition of an anoxic treatment stage. Generally, in an aerobic zone (in the presence of oxygen) ammonia is converted to nitrate.
- There are many alternative layouts for activated sludge with a nitrification process. The general flow diagram for leachate treatment using an activated sludge process is as follows:


Raw Wastewater \rightarrow Equalization Pond or Tank(s) \rightarrow Activated Sludge Process (aerobic) \rightarrow Clarifier \rightarrow Chemical Precipitation/Filtration \rightarrow Reverse Osmosis (RO) \rightarrow Ion Exchange (IE) \rightarrow Phosphorous Removal \rightarrow Effluent Holding Ponds or Tanks

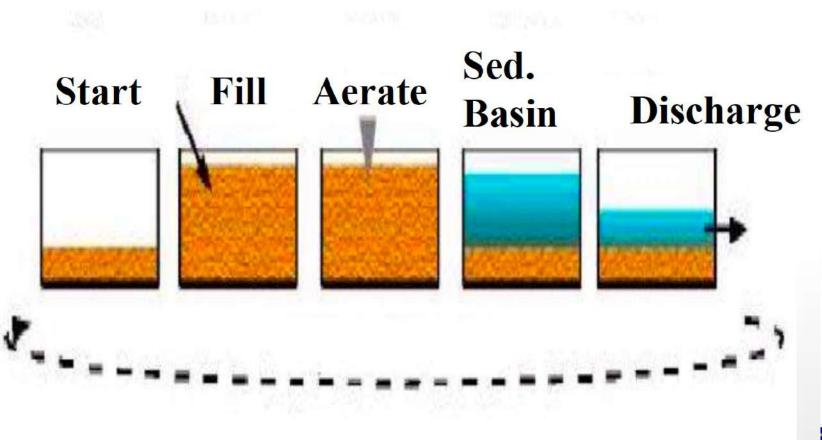
• This system requires regular sludge management. Sludge would be collected from the chemical precipitation process and the clarifier on a frequent basis. The equalization pond/tank(s) is also expected to require sludge removal every 4-5 years. Waste liquid from RO and IE would be evaporated and solidified prior to disposal.

Basic configuration of the activated sludge process

Sequential Batch Reactors

- The SBR process has three stages with recycling between stages (sludge storage, mixed liquor digestion, followed by SBR stage) and can incorporate not only BOD removal but also nitrification and denitrification.
- Additionally, it can provide sludge reduction inside the system. To remove phosphorus, additional treatment would be required following the SBR stage. The general flow diagram for leachate treatment using the SBR process is as follows:

Raw Wastewater $\rightarrow \rightarrow$ Equalization Pond or Tank(s) \rightarrow SBR Process \rightarrow Chemical Precipitation/Filtration \rightarrow Reverse Osmosis (RO) \rightarrow Ion Exchange (IE)


- → Phosphorous Removal→ Effluent Holding Ponds or Tanks
- This system requires regular sludge management. Sludge would be collected from the chemical precipitation process on a frequent basis. The equalization pond/tank(s) will also likely require sludge removal every 4-5 years.
- Waste liquid from RO and IE would be evaporated and solidified prior to disposal.

4. Selected Biological Treatment Processes

Sequential Batch Reactors-Operation Sequence

Rotating Biological Discs

4. Selected Biological Treatment Processes

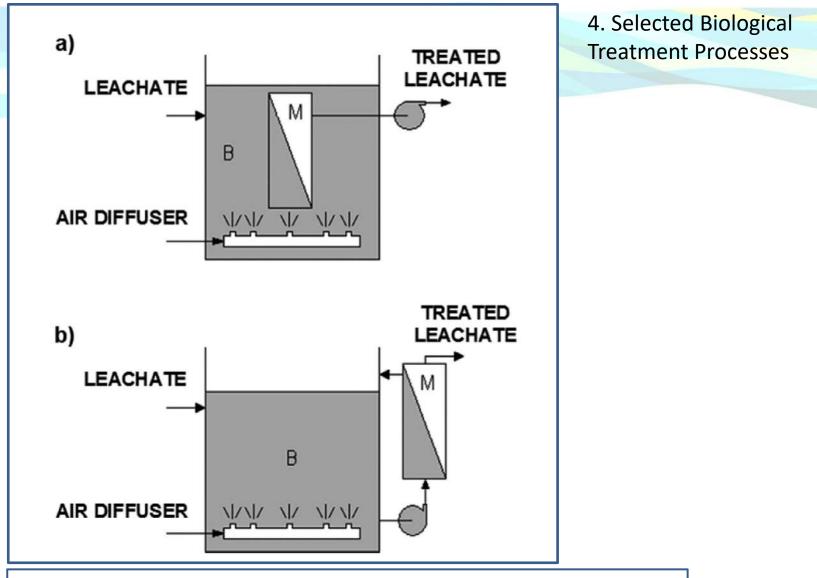
- The RBC process uses a fixed film of bacterial growth attached to a large disc, which rotates in a concrete tank where it makes contact with the influent leachate. The disc is partially submerged in the leachate in the tank to allow the bacteria exposure to oxygen when the disc rotates out of the leachate. The biological treatment occurs on the surface of the disc as the biomass gradually accumulates. When mass builds and anaerobic conditions develop at the disc interface, the excess biomass naturally shears off and accumulates inside the tank. Several RBC units are required to treat large flows and/or high contaminant loadings.
- The general flow diagram for leachate treatment using RBC units is as follows:

Raw Wastewater \rightarrow Equalization Pond or Tank(s) \rightarrow RBC \rightarrow Denitrification Unit(s) \rightarrow Clarifier

- \rightarrow Chemical Precipitation/Filtration \rightarrow Reverse Osmosis (RO) \rightarrow Ion Exchange (IE)
- → Phosphorous Removal → Effluent Holding Ponds or Tanks
- This system requires regular sludge management. Sludge would be collected from the chemical precipitation process and the clarifier on a frequent basis. The equalization pond/tank(s) will also likely require sludge

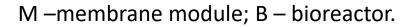
4. Selected Biological Treatment Processes

Rotating biological discs



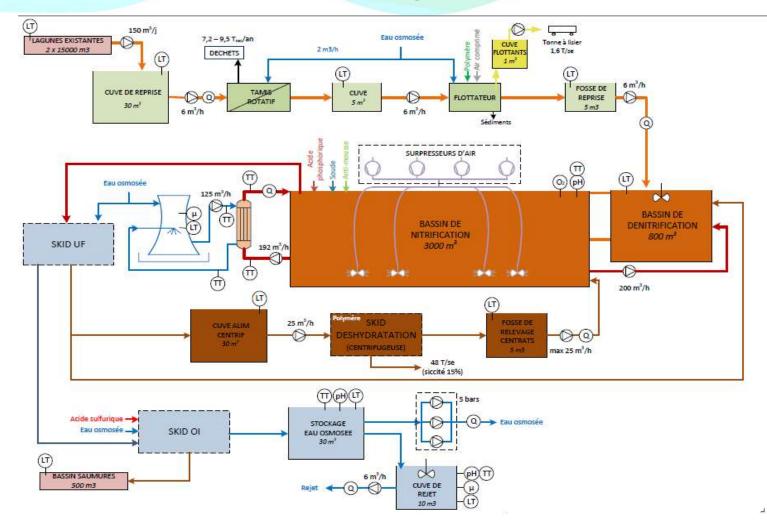
Membrane Bioreactor Reactor (MBR)

Membrane bioreactors are high-cell-concentration biosystems, where leachate passes through ultrafiltration membranes with maximum pore diameters typically ranging from 0.01 to 0.1 mm, which retain entirely biomass and suspended solids. Microbial cells are recycled by a centrifugal pump, the pollutant degradation is ensured by aeration from the bottom, and the operation takes place under a pressure of about 10–15 kPa. Membrane bioreactors can be divided into two categories, according to the internal or external location of the membrane inside the Reactor.

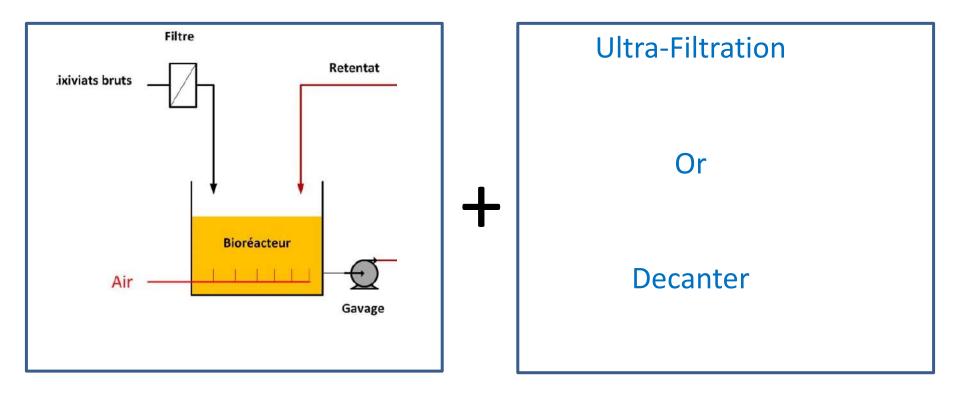


(a) Setup with the membrane module placed inside the reactor.

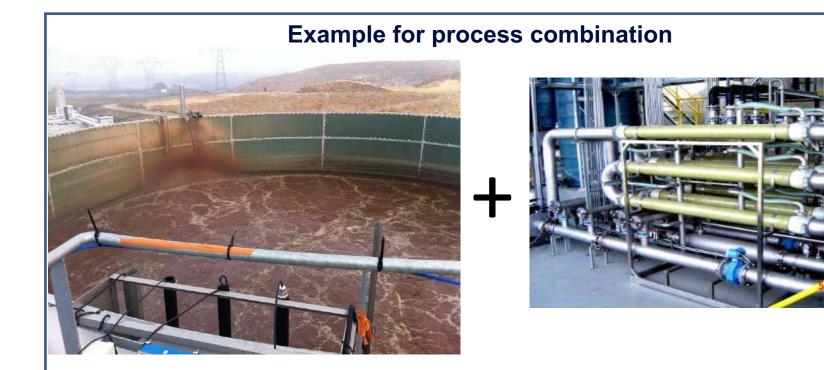
(b) Setup with the membrane module placed outside the reactor.



4. Selected Biological Treatment Processes

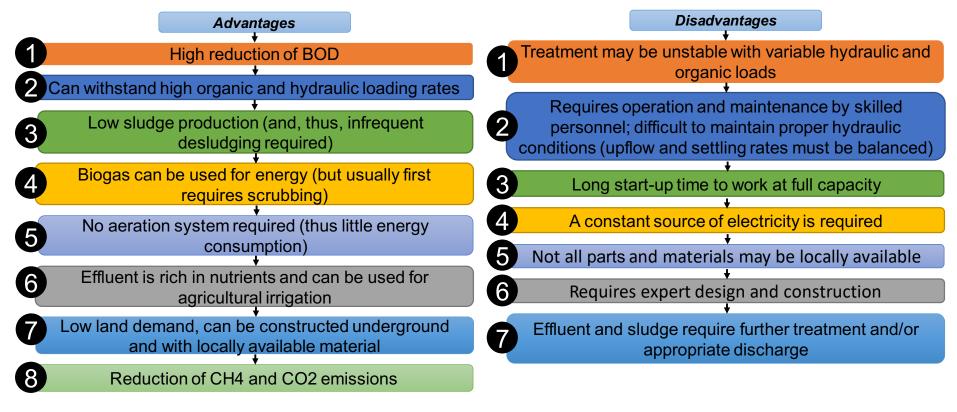

Illustration of Membrane Biologic Reactor (MBR) full scheme

Activated sludge followed by membrane filtration



4. Selected Biological Treatment Processes

BRM : Synergy between Biological and Filtration technologies


barrier for the separation of Suspended mater and purified water

4. Selected Biological Treatment Processes

UASB is a single tank process: Wastewater enters the reactor from the bottom, and flows upward \rightarrow A suspended sludge blanket filters and treats the wastewater as the wastewater flows through it

Source: Beta, https://www.sswm.info/node/8211

(FT) **Final effluent** In wastewater Blackwater 1. EQ tank Faecal Sludge 2. Screen Brownwater 3. NaOH Biogas Faeces 4. **Holding tank** 5. Excreta Leachate 6. **UASB** reactor **Effluent Tank** Out Legend Wastewater flow Biogas flow NaOH flow Flow arrows and control: p.H pH Transmitte **P Digested Faecal** Temperature Indicate Flow Transmitte Level Transmitte Sludge UASB convert the organic matter into biogas, which can be Flow Control Valve Non-return Valve recovered Safety relief Valve **Fertigation Water** 2. Pumr The nutrient-rich effluent can be used for agricultural \triangleright irrigation Sludge, even is partly stabilized (mineralized) and can be \succ used as an organic soil fertilizer after composting

4. Selected Biological Treatment Processes

Design Considerations

CONSULTANTS

Primary settling is usually not required before the UASB

4. Selected Biological

Treatment Processes

pH Value	 ✓ The pH-value needs to be between 6.3 and 7.85 to allow bacteria responsible for anaerobic digestion to grow. ✓ The pH-value is also important because at high pH-values, ammoniac (NH₄+) dissociates to NH₃ which inhibits the growth of the methane producing bacteria.
Temperature	 ✓ For an optimal growth of these bacteria and thus a optimal anaerobic digestion, the temperature should lie between 35 to 38°C. ✓ Below this range, the digestion rate decreases by about 11% for each 1°C temperature decrease and below 15°C the process is no longer efficient.
COD Loads	 Influents should have concentrations of above 250 mg COD/L, as for lower rates, anaerobic digestion is not beneficial. Optimum influent concentrations are above 400 mg COD/L and an upper limit is not known.
Hydraulic Retention Time (HRT)	 The HRT should not be less than 2 hours. Anaerobic microorganisms, especially methane producing bacteria, have a slow growth rate. At lower HRTs, the possibility of washout of biomass is more prominent. The optimal HRT generally lies within 2 to 20 hours.
Upflow Velocity	 The upflow velocity in UASB is an important design parameter as the process plays with the balance of sedimentation and upflow. An upflow velocity of 0.7 to 1 m/h must be maintained to keep the sludge blanket in suspension.
	Source: Beta, https://www.sswm.info/node/8211

Cost Consideration/Operation & Maintenance

Cost Consideration

- The significantly lower level of technology required by the UASB process in comparison with conventional advanced aerobic processes means that they are also cheaper in construction and maintenance.
- Capital costs for construction can be estimated as low to medium and comparable to baffled reactors.
- Operation costs are low, as usually no costs arise other than desludging costs and the operation of feeding pump.

Operation & Maintenance

- The UASB is a Centralized Treatment technology that must be constructed, operated and maintained by professionals.
- A skilled operator is required to monitor the reactor and repair parts, e.g., pumps, in case of problems.
- UASB reactors require several months to start up. The sludge not only needs to form but also needs to adapt to the characteristics of the specific WW.
- To keep the blanket in proper position, the flow rate must be controlled and properly geared in accordance with fluctuation of the organic load.
- Desludging is infrequent and only excess sludge is removed every 2 to 3 years.

4. Selected Biological Treatment Processes

5. Performance

Performance of Suspended Growth Biological Nitrification Processes

T	Performance				Additional Comments	
Technology	BOD	TSS	Ammonia	TP	Benefits	Drawbacks
Suspended Growth	Biological N	litrification l	Processes			
Activated Sludge (AS)	Good	Good	Good (<1 mg/L)	Poor		 Requires high efficiency aeration system Continuous flow mode requires external clarification stage following the AS unit Requires closely controlled operational conditions
Oxidation Ditch	Good	Good	Poor	Poor		 Requires aeration system Requires external clarification stage followin aeration Requires closely controlled operational conditions Susceptible to cold climate issues
Sequencing Batch Reactor (SBR)	Good	Good	Good	Poor	 Does not require external clarification stage 	 Requires aeration system Requires closely controlled operational conditions Requires skilled operator

Performance	Description		
Good	High level of treatment; anticipated to meet the estimated discharge limits		
Fair	Some treatment; requires further treatment to meet the estimated discharge limits		
Poor	Inadequate treatment; requires separate treatment stage(s)		

Source: TAGGART, Technical Support Document #10, Leachate management, December 2014

5. Performance

Performance of different types of biological treatment processes

Taskaslama	Performance				Additional Comments		
Technology	BOD	TSS	Ammonia	TP	Benefits	Drawbacks	
Aerated Lagoon	Good	Good	Poor	Poor	 Minimal operational controls 	 Requires aeration system Susceptible to cold climate issues Large footprint 	
Trickling Filter	Good	Good	Poor	Poor	 Minimal operation and maintenance requirements 	 Requires pre-treatment (primary settling) Susceptible to cold climate issues 	
Rotating Biological Contractor (RBC)	Good	Good	Good (<3 mg/L)	Poor		 Requires external clarification stage following the RBC unit Requires electrical supply for shaft motor Requires closely controlled operational conditions Susceptible to environmental conditions and fluctuations in influent quality (e.g., temperature, pH, flow, concentrations, etc.) 	
Aerobic Submerged Fixed Beds	Good	Good	Good (<3 mg/L)	Poor	 Can have higher organic loading rates compared to trickling filters Smaller footprint 	 Requires aeration system High energy use 	
Aerobic Submerged Mobile Beds	Good	Good	Poor	Poor		 Requires aeration system Susceptible to cold climate issues 	

Performance ranking of three types of biological treatment (1)

Criteria	Activated Sludge (AS)	Sequencing Batch Reactor (SBR)	Rotation Biological Contactor (RBC)
	Ranked 3 rd because:	Ranked 1 st because:	Ranked 4 th because:
	 May require adjustment to optimize treatment at different flow rates 	 May require adjustment to optimize treatment at different flow rates 	 Can handle flow changes May be susceptible to increases in peak loadings
Flexibility	 May overcome increases in peak loadings 	 Susceptible to increases in peak loadings 	 System can be expanded by adding RBC units
	 System can be expended by adding new AS units and clarifier 	 Easier and less costly than the AS system to add additional treatment units to handle additional flow 	
	Ranked 1 st (tied) because:	Ranked 2 nd because:	Ranked 3 rd because:
Reliability	 Aeration system and pump failure are only reliability concerns 	 Restart of SBR would require a skilled operator (complex process control system) Aeration system is equipped 	 Has a reputation for variable performance, sensitivity to variable inflow quality and weight imbalances causing rotating shaft damage
		with jet aerators that allow mixing, self-cleaning, and accessibility for maintenance. Pumps and automated switch failure are concerns	 System upset would require cleaning discs and lengthy restart
	Ranked 3 rd because:	Ranked 4 th because:	Ranked 1 st because:
Ease of Use	Requires regular maintenance of aeration system and the chemical addition system	Higher level of operation and maintenance required due to controls, aeration system, pumps, valves and automated switches	 Minimal operation requirements

Performance ranking of three types of biological treatment (2)

Criteria	Activated Sludge (AS)	Sequencing Batch Reactor (SBR)	Rotation Biological Contactor (RBC)
Capital Costs	 Ranked 1st (tied) because: Requires high efficiency aeration system Continuous flow mode of AS requires external clarification stage following the AS unit May require pre-treatment (chemical precipitation) Requires equalization pond/tank Lower capital cost compared 	 Ranked 1st (tied) because: Requires high efficiency aeration system SBR does not require external clarification stage May require pre-treatment (chemical precipitation) Requires equalization pond/tank Lower capital cost compared to Siemens PACT system but 	 Ranked 1st (tied) because: Does not require aeration system but requires large motors for shaft rotation Requires external clarification stage May require chemical precipitation treatment unit Requires equalization pond/tank Lower capital cost compared
Operational Costs	to Siemens PACT system but similar to SBR and RBC Ranked 2 nd because: Electricity is required for aeration system and pumps operating in continuous mode Chemical cost to remove metals, non-biodegradable and toxic compounds prior to AS treatment unit	 similar to AS and RBC Ranked 1st (tied) because: Electricity is required for pumps and blowers operating in intermittent mode (less electricity than continuous aeration systems) Chemical cost to remove metals, non-biodegradable and toxic compounds prior to 	to Siemens PACT system but similar to AS and SBR Ranked 1 st (tied) because: Energy requirement for pumps and the shaft Regular bearing maintenance Requires heating of the RBC tank to maintain optimal temperature (10-15°C)
	 Requires heating of the AS tank to maintain optimal temperature (10-15°C) 	 SBR treatment unit(s) Requires heating of the SBR tank to maintain optimal temperature (10-15°C) 	

Performance ranking of three types of biological treatment (3)

Criteria	Activated Sludge	Sequencing Batch Reactor	Rotation Biological Contactor	
	(AS)	(SBR)	(RBC)	
	Ranked 2 nd (tied) because:	Ranked 1 st because:	Ranked 2 nd (tied) because:	
	 Regular pump, blower and	 Regular pump, blower and	 Regular pump, and boiler	
	boiler maintenance	boiler maintenance	maintenance	
Operations and	 Sludge removal from AS treatment unit, chemical precipitation unit and clarifier on a regular basis 	 Sludge removal from SBR treatment unit(s) and chemical precipitation unit on a regular basis 	 Chemical cost to remove metals, non-biodegradable and toxic compounds prior to RBC 	
Maintenance	 Plate air diffusers require	 Less sludge volume from SBR	 Sludge removal from RBC and	
	shutdown and removal for	treatment unit(s) compared to	chemical precipitation unit on	
	cleaning and replacement	other selected options	a regular basis	
		 Jet aerators are located above water for maintenance without shutdown and are self- cleaning 		

Advantages of anaerobic over aerobic leachate treatment

- lower energy requirement as no oxygen is required and thus reduces the operation cost;
- low sludge production as only about 10 15% of organics is transformed into
- biomass;
- biogas production (85 90%) favors the energy balance with a low nutrient
- requirement making it appropriate for treating leachate;
- possibility to treat leachate with high organic concentration without dilution used for aerobic processes, reduces space requirements, size of the plant and capital cost;
- valuable substances such as ammonia-nitrogen can be retained;
- anaerobic microorganisms seldom reach endogenous phase, important for the
- treatment of leachate with variable volume and strength;
- destruction of pathogens at thermophilic temperature ranges if it is intended to be used as fertilizers;
- elimination of odor problems;
- anaerobic sludge is highly mineralized than aerobic sludge, which increases its value as fertilizer if toxic metals are removed; and
- anaerobic sludge tends to settle more easily than aerobic sludge where addition of flocculants is required.

