

Municipal Solid Waste to Energy Technology Recommendations and Implementation Considerations

Dr Ahmed Gaber

Presentation to

Waste to Energy Ministerial Committee

14th of August 2012

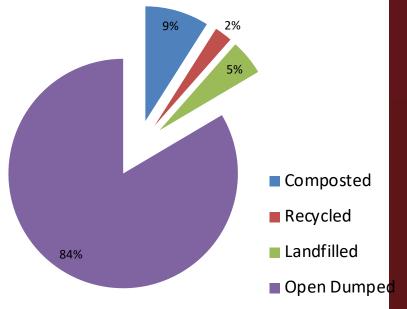
Meeting Objectives

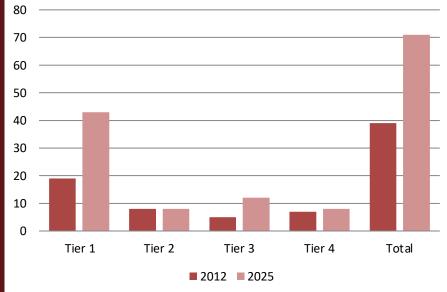
- Communicate W2E criteria evaluation and tipping fee analysis results.
- Outline W2E implementation recommendations.
- Discuss the development of a W2E enabling framework.

Presentation Overview

- Waste to Energy Rationale
- MSW Energy Recovery Options
- Analysis of W2E Deployment Scenarios
- Implementation Considerations
- Next Steps and Decisions Required: W2E Enabling Framework

WASTE TO ENERGY RATIONALE

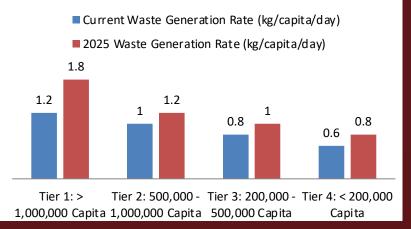

MSW TREATMENT AND DISPOSAL CHALLENGES DIVERSE URBAN CENTER CHARACTERISTICS REQUIRE DIVERSE WTE SOLUTIONS MSW VALUE FROM AN ENERGY PERSPECTIVE W2E TECHNOLOGY DIVERSITY W2E IS ABOUT WASTE MANAGEMENT NOT ENERGY PRODUCTION

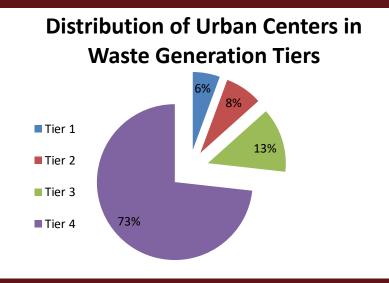

MSW Treatment and Disposal Challenges

Current MSW management systems need to be upgraded and expanded, to deal with increased capacity and reduce economic, health, social and environmental impact.

Reported MSW Treatment and Disposal

Total Daily Waste Generation from Identified Urban Centers


Source: "Country Profile on Solid Waste Management Situation In Egypt", Regional Solid Waste Exchange of Information and Expertise Network in Mashreq and Maghreb countries, July 2010



Diverse Urban Center Characteristics Require Diverse WTE Solutions

• Developed a Multi-tier model for urban centers to differentiate according to waste generation rates.

Urban Center Tier Classification

Different urban centers have different characteristics in terms of: Size of urban center, relative distance and potential for agglomeration of waste from nearby centers, access to desert land within distance for treatment and/or disposal, availability of land for transfer station and/or material recovery facility near source of MSW.

MSW Value from an Energy Perspective

- Each ton of MSW can generate between 150-550 kwatt.hr
- At a total current waste generation from identified urban centers of 14 Million tons MSW/year, W2E has potential to generate between 250 – 900 MWatt.

• At a projected waste generation of 25.6 Millions tons MSW/year in 2025, W2E has potential to produce between 400 - 1.600 MWatt.

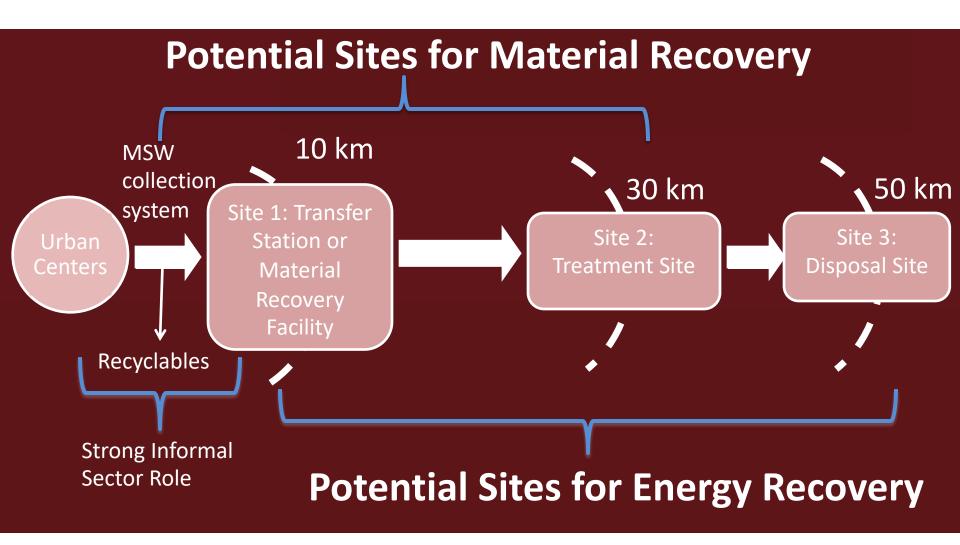
W2E Technology Diversity A European Perspective

Route	Current Significance	Where in Europe?	Form of Energy	Status of Technology	Growth Potent.
WtE from residual MSW (incineration with energy recov)	00000	Throughout	Power, Heat	Mature	Yes, Regional
Incineration of RDF, SRF derived from MSW & CDM in Cement kilns, power plants etc	000	Denmark, Italy, Austria, Sweden, Estonia, Finland, UK	Power, Fuel replacer	Mature/ Being proven	Regional
Anaerobic Digestion from source- separated organic MSW	0	Italy, Estonia, Belgium, Denmark, France, UK	Biogas Power	Proven/ developing	yes
Anaerobic Digestion from Sorted organic fraction of MSW	0	Italy, Estonia, France	Biogas, Power	Proven/ developing	Regional yes
Incineration of Waste derived Biomass (eg wood)	00	Denmark, Netherlands, Belgium	Power subsidised	Proven	Yes Regional
Landfill Gas Extraction	00	Throughout Western Europe	Power, Biogas	Mature	Yes, Regional
Gasification & Pyrolysis	0	Few	Power, Syngas	Developing	?

Source: "Energy from Municipal Solid Waste: What is the current perspective?", Confederation of European Waste-to-Energy Plants, November 2010

W2E is more about Waste than Energy

- There are cheaper and more scalable routes compared to W2E for energy generation.
- MSWM, a paid service, needs a new, sustainable treatment model.
- W2E can maximize value extraction from MSW, reduce costs, and build a sustainable treatment model that also contributes to national energy generation.

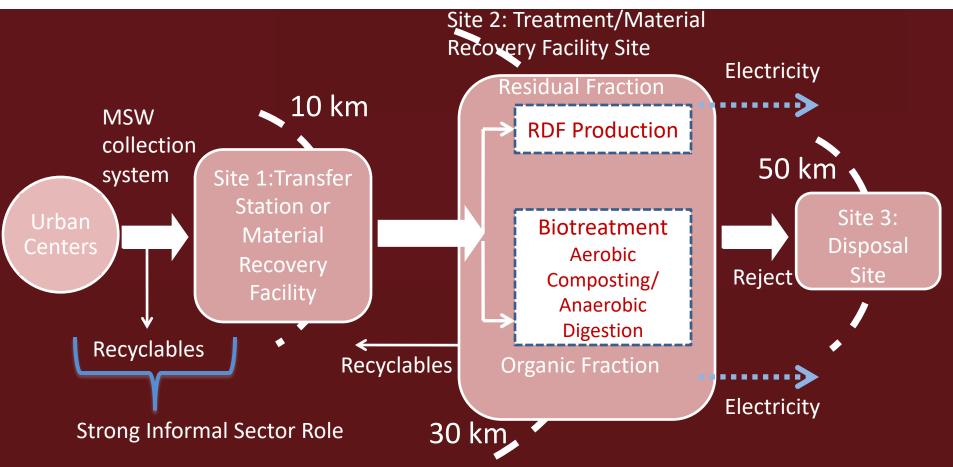


MSW ENERGY RECOVERY OPTIONS

OVERVIEW OF MSWM MECHANICAL BIOLOGICAL TREATMENT THERMAL TREATMENT HYBRID BIOLOGICAL/THERMAL SANITARY LANDFILL WITH GAS PRODUCTION W2E SCENARIOS

Municipal Solid Waste Management

MSWM is a Supply Chain Problem.

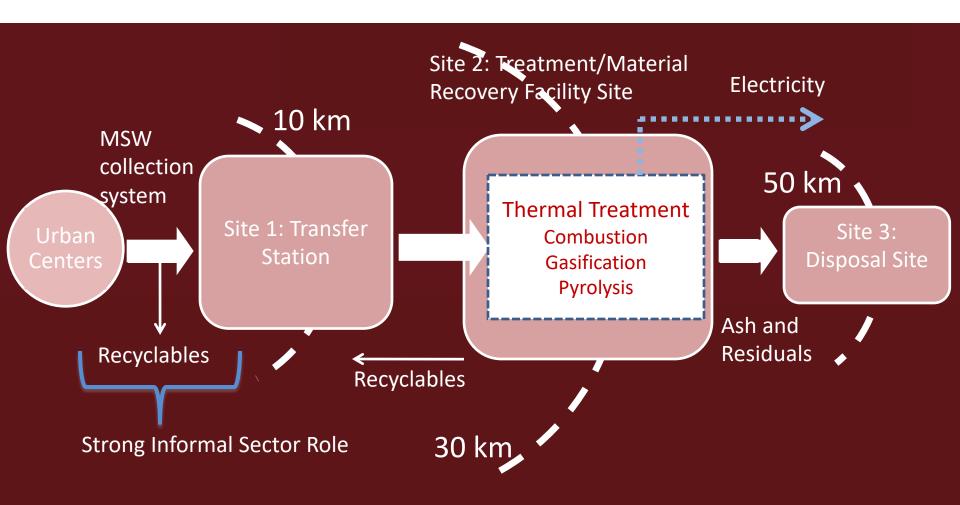


W2E: Mechanical Biological Treatment

- In MBT technologies, organic and residual fractions are separated before treatment to optimize energy/material recovery
- The residual fraction is converted to Refuse Derived Fuel (RDF) that is used as an alternative fuel in the cement industry.
- The organic fraction can be converted to compost aerobically, requiring large land. Alternatively, the organic fraction can be anaerobically digested to produce biogas and digestate, a soil conditioner, with smaller land requirements.
- The reject from both processes is landfilled.
- MBT technologies are lower cost, have high land requirements and
- Supply Chain Considerations: Sorting at Transfer Station vs. Sorting at Treatment Facility

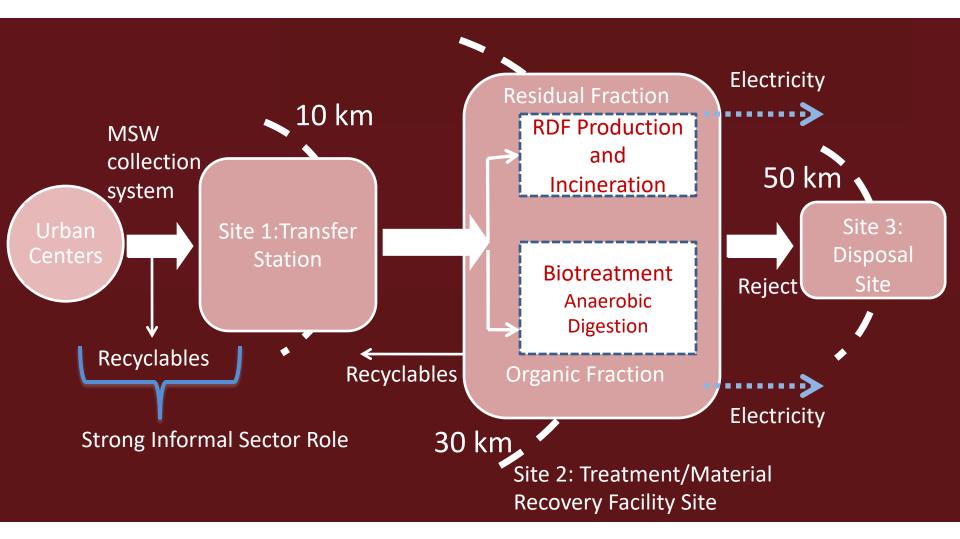
W2E: Mechanical Biological Treatment

Material Recovery Facility can be integrated with Transfer Station or with Disposal Site depending on land availability

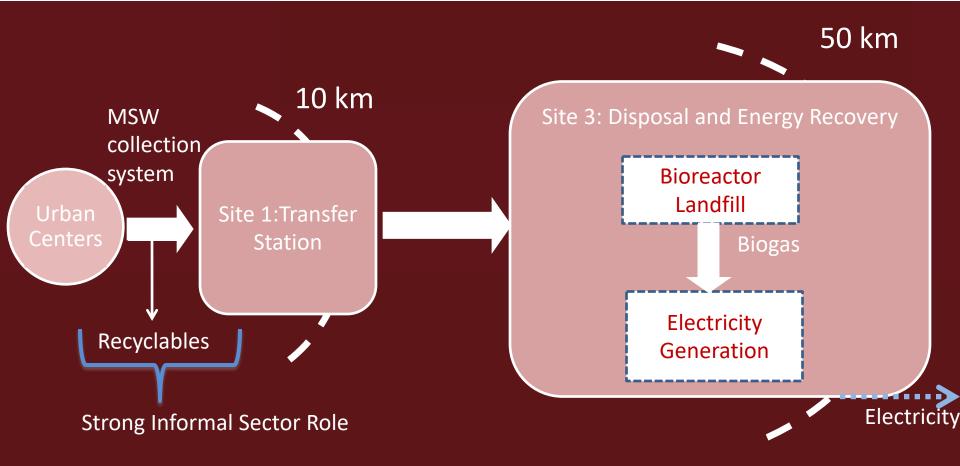

W2E: Thermal Treatment

Directly extract energy from waste via three potential routes:

- Combustion: mass burn waste to generate electricity with advanced emissions treatment system.
- Gasification: Heat waste with low oxygen to generate high quality gas then burn to generate electricity
- Pyrolysis: Heat waste in absence of oxygen to generate medium quality gas then burn to generate electricity.



W2E: Thermal Treatment



W2E: Hybrid Biological/Thermal

W2E: Sanitary Landfill with Gas Recovery: Bioreactor Landfill

Waste to Energy Scenarios

- 1A. MBT with Composting and RDF (offsite use) integrated with Transfer Station
- 1B. MBT with Composting integrated with Material Recovery Facility and RDF production (offsite use)
- 2A. MBT with RDF (offsite use) and Anaerobic Digestion and onsite Electricity Generation integrated with Transfer Station
- 2B. MBT with Anaerobic Digestion and onsite Electricity Generation integrated with Material Recycling facility RDF production (offsite use)
- 3- MBT with Anaerobic Digestion, RDF production, and onsite Electricity Generation integrated with Material Recycling facility
- 4A. Direct combustion at Contour 10 Km
- 4B. Direct combustion at Contour 30 km
- 4C. Direct combustion at Contour 50 km
- 5- Gasification at Contour 30 Km
- 6- Pyrolysis at Contour 30 km
- 7- Bioreactor Landfill with LFG energy production

ANALYSIS OF WTE DEPLOYMENT SCENARIOS

DECISION MAKING METHODOLOGY RANKING EVALUATION RESULTS TIPPING FEE ANALYSIS CONCLUSIONS

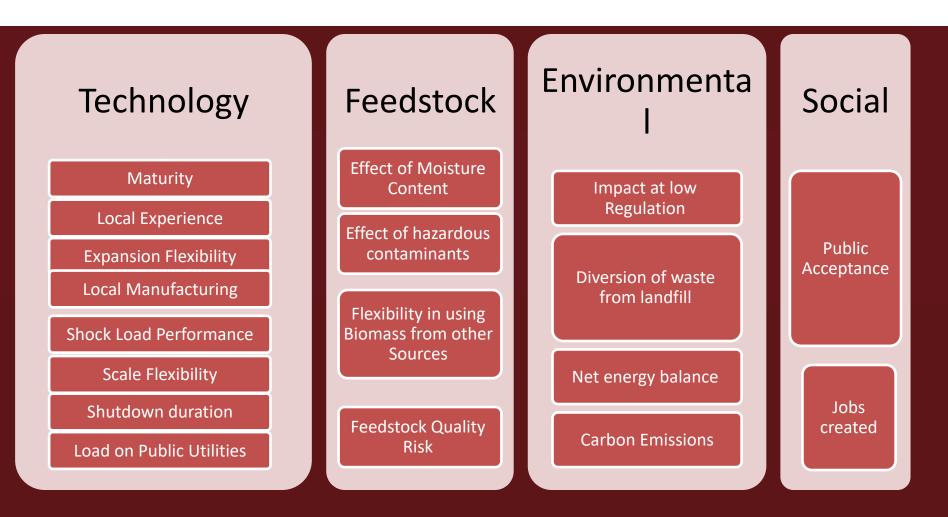
Decision Making Methodology

Two types of analysis:

Weighted Criteria Evaluation Analysis: Each scenario is evaluated, primarily qualitatively, against environmental, social and technical criteria to provide a subjective but holistic evaluation of feasibility.
Tipping Fee Analysis: Building on a conceptual design and the international experience, an estimate of tipping fee for each scenario, with a sensitivity

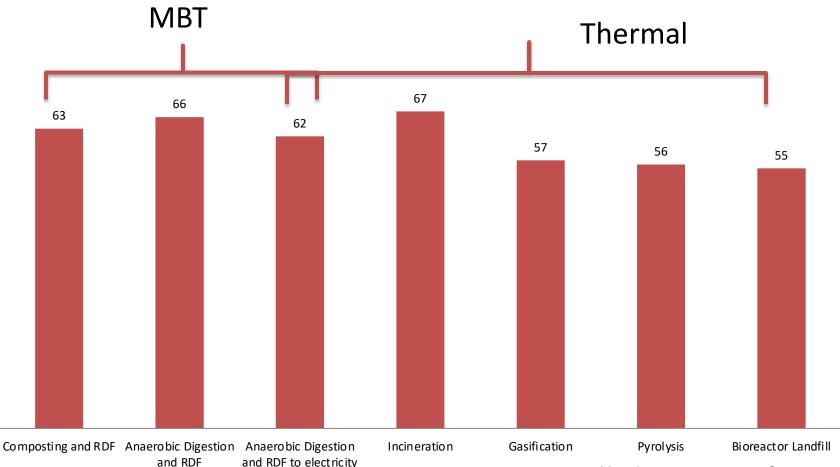
analysis, provides an objective financial evaluation of feasibility through tipping fees.

Weighted Criteria Evaluation Analysis


- Conceptual design results and international experience used to evaluate each scenario against criteria in the following domains:
 - 1- Feedstock domain: suitability of technology to the local feedstock.
 - 2- Technology domain: suitability of technology to deployment in the local Egyptian context.
 - 3- Environmental domain: Impact of technology on the environment.

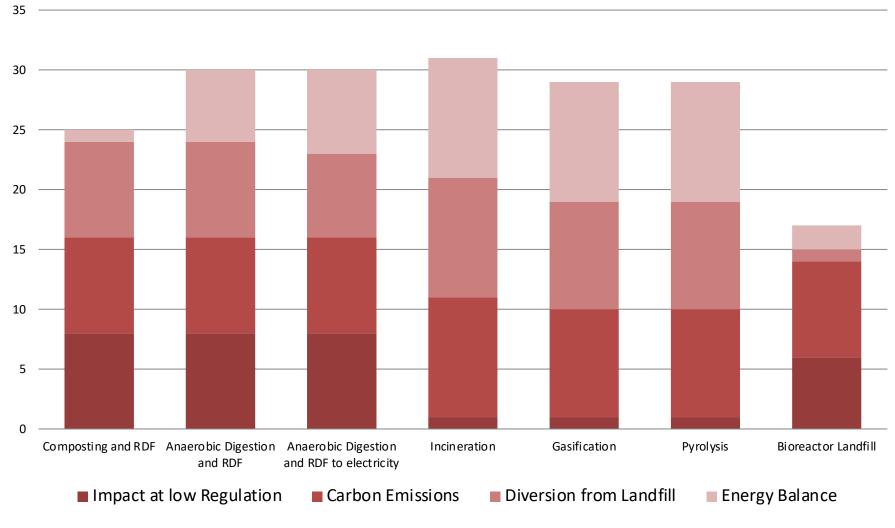
4- Social domain: Impact of technology on society.

- Rankings of criteria by study team with inputs from the Egyptian Technical Committee on W2E.
- Ranking of scenarios against criteria to develop an overall



Evaluation Criteria

Scenario Evaluation Results: Rankings


Prepared by Chemonics Egypt-Draft

Overall Normalized Scores of WTE Scenarios

Normalized Scale from 1-100. Higher Score indicate better performance ²³

Scenario Evaluation Results: Rankings

Environmental Domain Performance

Normalized Scale from 1-100. Higher Score indicate better performance

Scenario Evaluation Results: Rankings

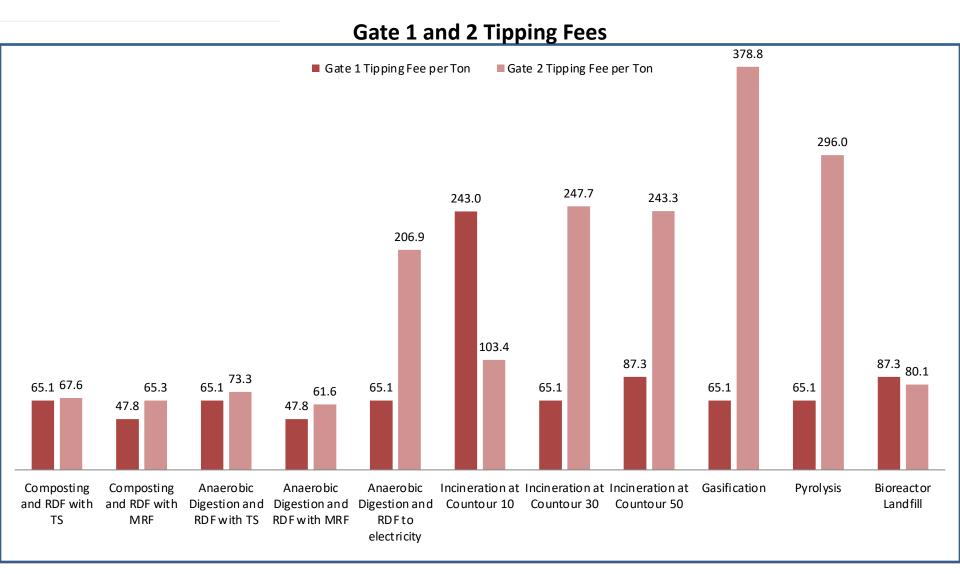
80 70 60 50 40 30 20 10 0 Gasification Composting and RDF Anaerobic Digestion Anaerobic Digestion Incineration **Pyrolysis Bioreactor Landfill** and RDF and RDF to electricity Complexity Global Maturity Local Experience Local manufacturing potential Shock Loads Sensitivity Expansion flexibility

Scale Flexibility

Maintenance Shutdown Duration Load on Public Utilities

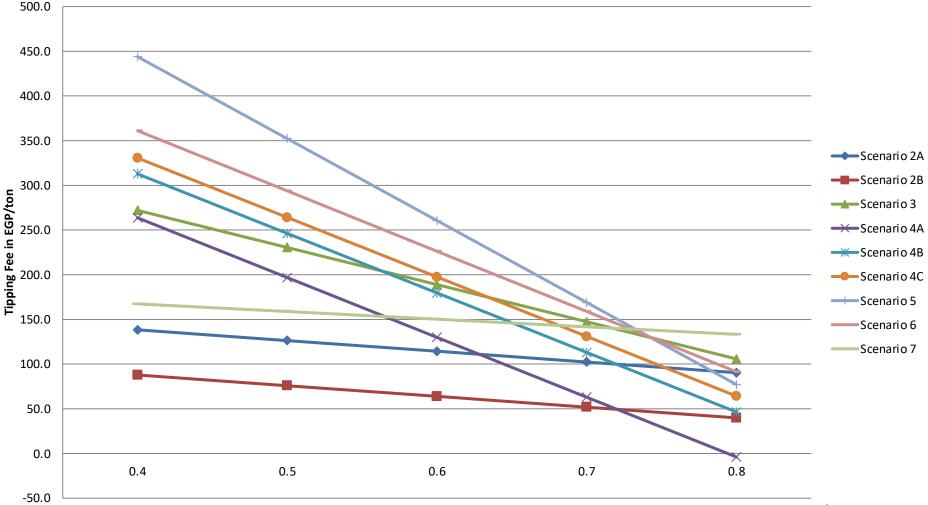
Technology Domain Performance

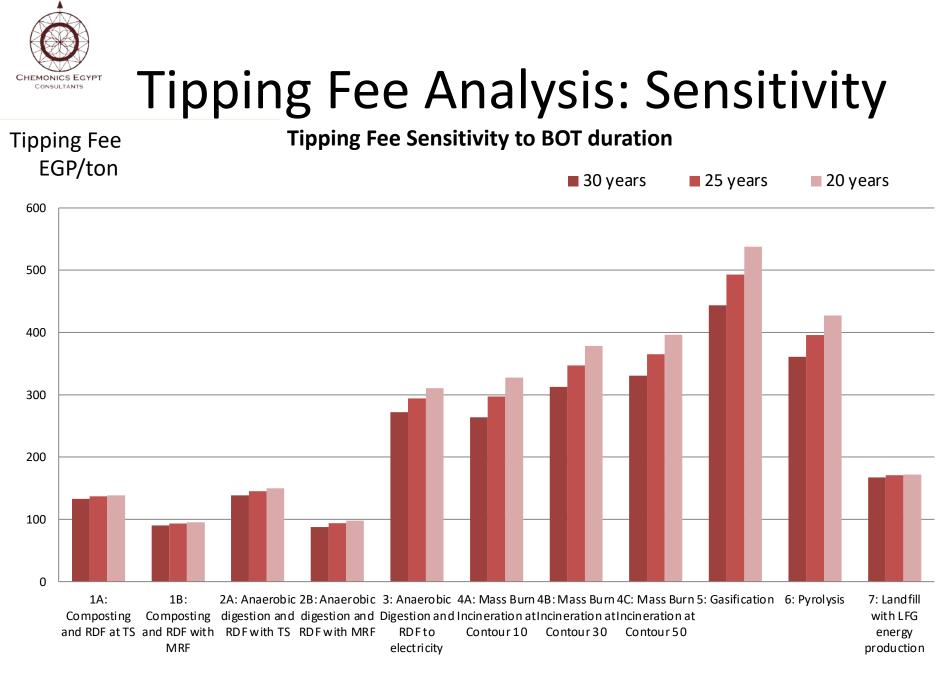
Normalized Scale from 1-100. Higher Score indicate better performance



Tipping Fee Analysis

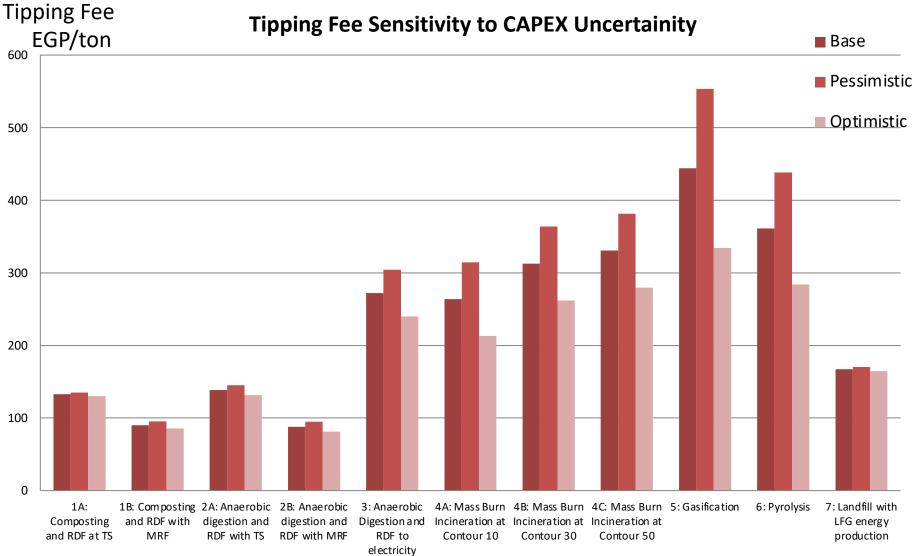
- Based on a conceptual level design of each scenario, tipping fee was estimated according to the assumptions in Annex 1.
- The Tipping Fee is calculated at Gate 1, Contour 10 km, and Gate
- 2, Contour 30 km.
- Sensitivity of results to:
- 1- Price of electricity in range of 0.4 0.8 EGP/Kwatt.hr
- 2-BOT duration in range of 20 30 years
- 3- CAPEX uncertainty for each scenario.


Tipping Fee Analysis: Results



Tipping Fee Analysis: Sensitivity

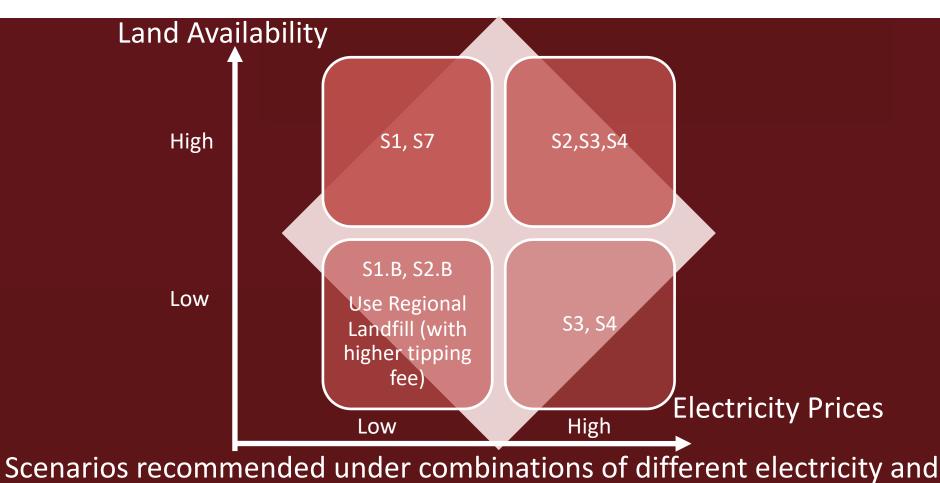
Sensitivity of Tipping Fee to Electricity Prices for W2E Scenarios



Electricity Prices in EGP/kwatt.hr

Tipping Fee Analysis: Sensitivity CHEMONICS EGYPT

CONSULTANTS



Analysis Conclusions

- Pyrolysis and gasification are currently infeasible but might become important in the future
- MRF Integration improves financial feasibility
- Tipping fees are very sensitive to electricity prices, and relatively insensitive to BOT duration. Electricity price trajectory sets comparative financial technology performance.
- There is a clear trade-off between land availability and tipping fee.
- Thus: There is no one technological solution. Detailed feasibility analysis should consider more than one technology.

Analysis Conclusions

land availability levels.

IMPLEMENTATION CONSIDERATIONS

URBAN CENTER TIER /TECHNOLOGY LOCATION MATCHING PPP POTENTIAL PROJECTS: TIER 1 PPP POTENTIAL PROJECTS: TIER 2 TIERS 3 AND 4 RECOMMENDATIONS

Location Matching

 The location matching tables summarize which technology scenarios are applicable depending on type of available land.

Location matching

	S1	S2	S3	S4	S7 (only for regional use)
Urban Tiers	1,2,3,4	1,2	1,2	1,2	1,2,3,4
If Land available only at contour 10	Not Possible	Not Possible	Not Possible	Possible	Not Possible
If Land available only at contour 30 to 50 km	Possible	Possible	Possible	Possible	Possible
If Land available only at contour 50 km ++	1B	2B	Not Possible	Not Possible	Use regionally

PPP Potential Projects: Tier 1

Based on information communicated by Ministry of Finance and Cairo Governorate on available land and sites allocated to MSW treatment by Presidential Decrees, technologies were matched according to site features.

	Urban Center	Estimated current MSW generation, ton/day	Site allocated by Presidential Decree	Proposed Scenarios
1	Cairo North	2,200	Yes	1B, 2B, 4B,
2	Cairo West	1,000	To be combined with Cairo North	
3	Cairo East	3,900	Yes	1B,2B, 4B
4	Cairo South (A)	1,900	Yes	Extension of existing scenario 1A, 1B, 2A,2B
5	Cairo South (B)	1,300	To be combined with Cairo South (A)	Combine with Cairo South (A)

	Urban Center	Estimated current MSW generation, ton/day	Site allocated by Presidential Decree	Proposed Scenarios
1	Cairo North	2,200	Belbis site 1	1B, 2B, 4B,
			To be combined with Cairo North	
2	Cairo East	3,900		
3	Cairo West	1,000	Kattameya site	1B,2B, 4B
4	Cairo South (A)	1,900	New site in Korrayemat	Extension of existing scenario 1A, 1B, 2A,2B
			To be combined with Cairo South	Combine with Cairo South (A)
5	Cairo South (B)	1,300	(A)	

	Urban Center	Estimated current MSW generation, ton/day	Specified treatment and disposal site	Short listed scenarios for detailed feasibility study
5	Giza North	1,300	Fayoum Rd site	1B,2B,3,7
6	Giza South	3,000	To be combined with Giza North	
7	6th October Urban Cluster	3,500	El Wahat Rd site	1B,2B,3,7
			No data available	
8	Alexandria West	3,500		
9	Shubra Al Khayma Urban Cluster	1,900	Belbis site 2	1B,2B,3,7

	Urban Center	Estimated current MSW generation, ton/day	Specified treatment and disposal site	Short listed scenarios for detailed feasibility study
1	Tanta Urban Cluster	620	no	2B,3,4A
2	Al Mahala Al Kubra Urban cluster	570	no	2B, 3,4A
3	Damietta Urban Cluster	800	Expansion of existing site in Shata	1B, 2B, 3
4	Mansoura Urban Cluster	950	Potential site in Alabsho	1B,2B,3
5	Al Zakazik Urban Cluster	530	no	2B,3,4A
6	Port Said Urban Cluster	630	Expansion of existing site	1B,2B,3

	Urban Center	Estimated current MSW generation, ton/day	Specified treatment and disposal site	Short listed scenarios for detailed feasibility study
7	Alexandria Central	870	Data not available	
8	Alexandria East	770	Data not available	
9	Suez Urban Cluster	550	Expansion of existing site	
10	Assiut Urban Cluster	590	Expansion of existing site	1B,2B,3,7

NEXT STEPS AND DECISIONS REQUIRED

AN ENABLING FRAMEWORK FOR W2E A FREE MARKET FOR WASTE

A New Paradigm for MSW Management Required

- The old paradigm: waste is a liability
 - Collection, treatment and disposal services driven by government financing and regulation
 - Results in an inefficient, regulation-driven industry with high cost and low quality of service.
- The new paradigm: waste is a valuable resource with versatile uses
 - Treatment and disposal driven by an attractive business model, driven by tipping fee subsidy or higher electricity prices.
 - Treatment and disposal create a sink at the end of the supply chain, driving collection and transfer to more efficiency by creating financially attractive demand.

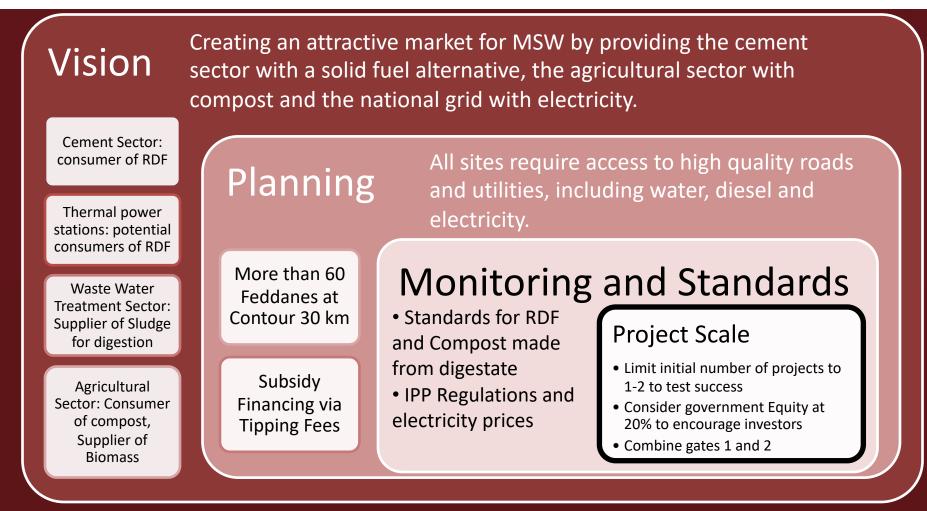
Next Steps and Decisions Required

- W2E technologies require an **enabling framework** to maximize their added value.
- W2E technologies **can impact many sectors**, not just the waste management sector: agriculture, renewable energy, transportation, environment, scientific research and waste water treatment. Framework must be explicitly linked to externalities and national strategic plans.
- W2E technologies **planning is a local governance decision**: governorates must be directly involved in planning.
- W2E technologies require service and product standards as well monitoring and regulation processes.

An Enabling Framework for W2E Technologies

Vision and Strategy		The long term objective or problem to be solved in deploying one particular technology.	
Energy Sector	Planning	B The location specific features, particularly land; roads and utilities, required to deploy a particular technology.	
	Siting	Monitoring and Standards Regulatory requirements to deploy technology	
Other Sectors	Tipping Fees	 Electricity Prices Environmental and Service Standards Project Scale Recommendations for deployment. 	

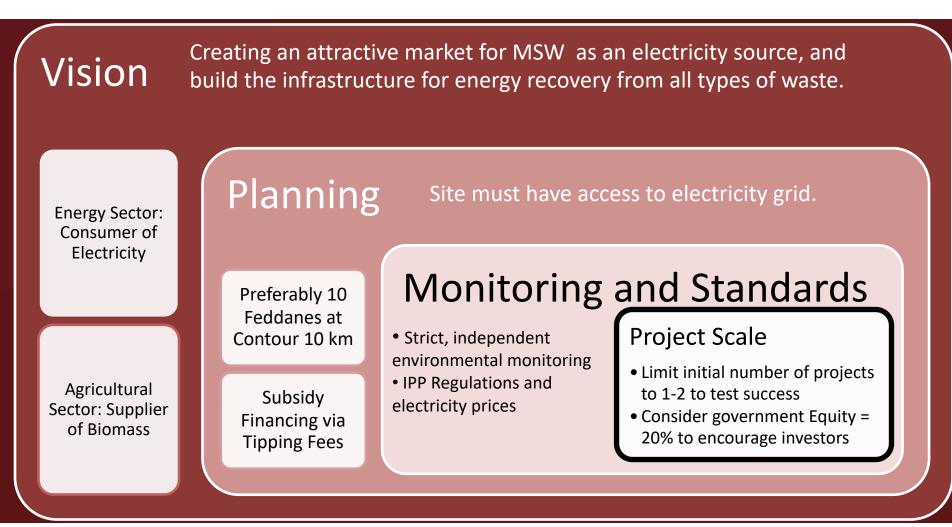
The following figures for each W2E technologies are based on the analysis done by the study team for W2E technologies assuming 1000 tons of mixed MSW per day



S1: Composting and RDF

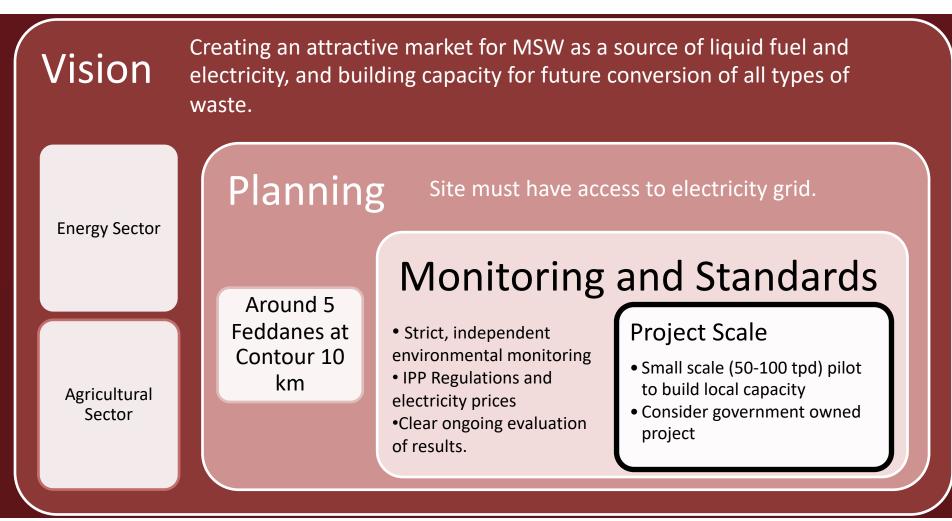
Vision	Creating an attractive market for MSW by providing the cement sector with a solid fuel alternative and agricultural sector with compost.			
Cement Sector: consumer of RDF	P	lanning	All sites require a and utilities, inclue electricity.	access to high quality roads ading water, diesel and
Agricultural Sector: Consumer of compost, Supplier of Biomass	N	More than 100 Feddanes	Monitoring • Standards for RDF	and Standards
Thermal power stations: potential consumers of RDF		it Contour 30 km	and Compost	Project Scale: Allow expansion at all tier levels

S2: RDF and Anaerobic Digestion



S3: Hybrid Thermal/MBT

Vision	bu		ture for energy	recovery	n electricity source, and from all types of waste, al sector.
Energy Sector: Buyer of Electricity		Planning	All sites re and utiliti electricity	es, includ	cess to high quality roads ing water, diesel and
Agricultural Sector: Consumer of compost, Supplier of Biomass		More than 60 Feddanes at Contour 30 km	Monito • Strict, independent	lent	and Standards Project Scale • Limit initial number of projects
Waste Water Treatment Sector: Supplier of Sludge for digestion		Subsidy Financing via Tipping Fees	• IPP Regulations and electricity prices	 Clinic Initial Individer of projects to 1-2 to test success Consider Government Equity at 20% to encourage investors 	



S4: Mass Burn Incineration

S5/S6: Gasification and Pyrolysis

S7: Bioreactor landfill

Vision

Upgrading the existing landfills and optimizing planned projects for energy recovery to develop a more value-extracting disposal solution for all types of waste.

Open Discussion

Annex 1: Tipping Fee Analysis Assumptions

General Model Assumptions:	_
Inflation Rate	11%
Tax Rate	20%
Design Capacity (tons per day)	1,000
Operating Days per year	365

Depreciation Assumptions	_
Civil Works	3%
Electromechanical Works	7%
Rolling Stock	10%

Annex 1: Tipping Fee Analysis Assumptions

Financing & Discounting Assumptions	_
<u>Debt</u>	
Debt Equity Ratio	70%
Interest Rate on Loans	11%
Loan Repayment Period	5
Loan Grace Period	
<u>Equity</u>	
Risk Free Required Rate of Return	8%
Risk Premium (Political, Economic, and Industry)	6%
Risk Adjusted Required Rate of Return	14%
Weighted Average Cost of Capital (WACC)	12%