

WRI Technology Lectures

Process Design

Ahmed Gaber

April 2018

The lecture is three parts:

Part 1: Unit operations and flowsheetingPart 2: Process design componentsPart 3: Applications from the WRI

Unit Operations and Flowsheeting

Unit Operations

- Unit Operations is a method of analysis and design of chemical engineering processes in terms of individual tasks/operations
- It is a way of organizing chemical engineering knowledge into groups of individual tasks/operations
- A unit operation: basic step in a chemical engineering process

Unit Operations: Classification

Fluid flow processes

- fluid transport
- solids fluidization
- mixing

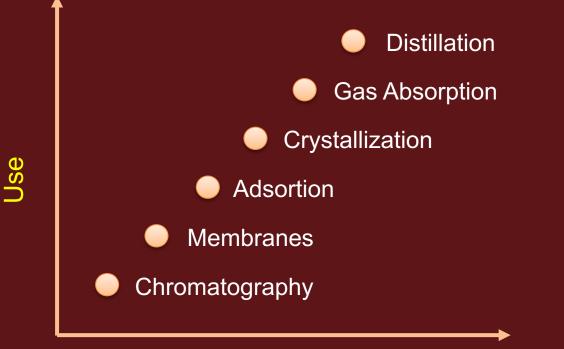
Heat transfer processes

- heating/cooling
- evaporation/condensation

Mass transfer processes

- absorption
- distillation
- extraction
- adsorption
- drying

Thermodynamic processes

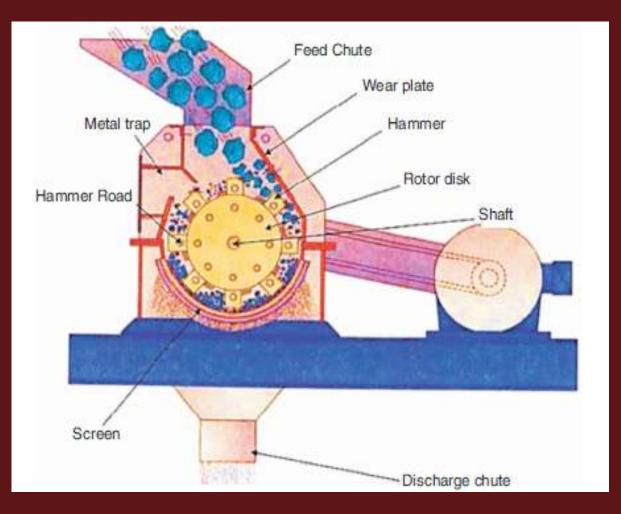

- liquifaction
- refrigeration

Mechanical processes

- crushing
- sieving
- solid transportation

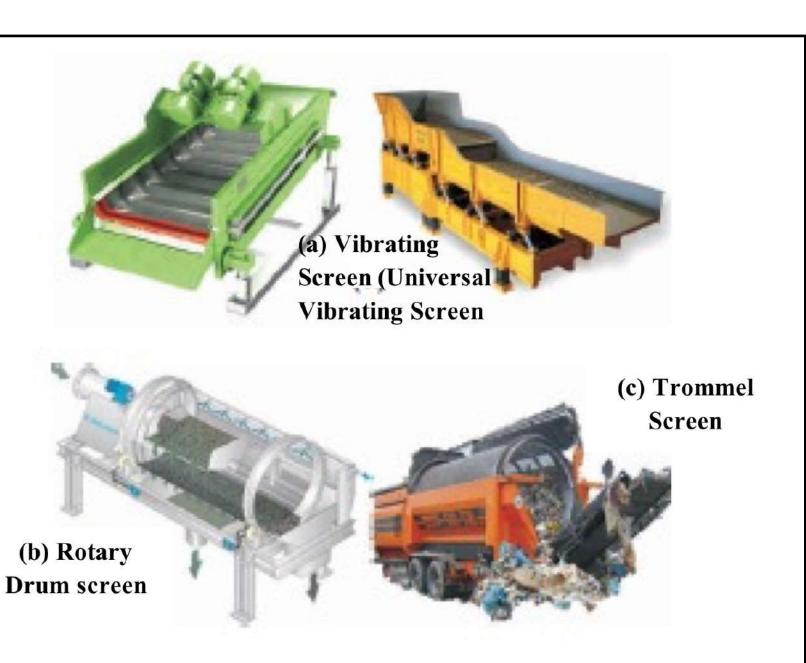
Chemical separation processes

- play a central role in chemical engineering

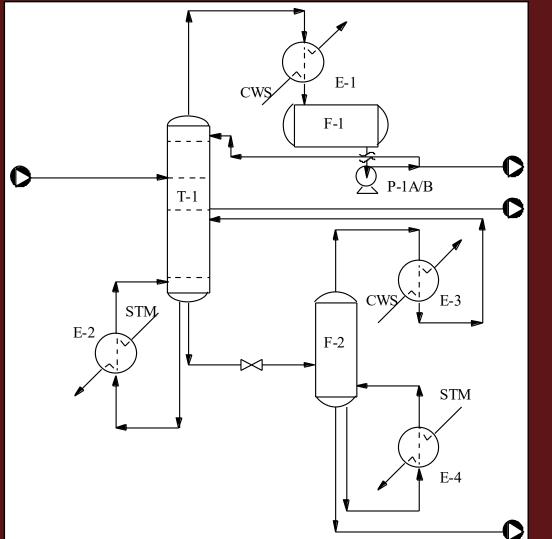


Technology maturity

Size Reduction Unit Operations As applied in the SW sector

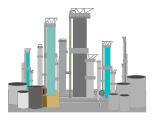

No.	Type of equipment	Functions	Applications
1.	Small grinders	Grinding, mashing	Organic residential solid wastes.
2.	Chippers	Cutting, slicing	Paper, cardboard, tree trimmings, yard wastes, wood, plastics.
3.	Large grinders	Grinding, mashing	Brittle and friable materials. Used mostly in industrial operations.
4.	Jaw crushers	Crushing, breaking	Large solids
5.	Rasp mills	Shredding, tearing	Moistened solid wastes. Most commonly used in Europe.
6.	Shredders	Shearing, tearing	All types of municipal wastes.
7.	Cutters, clippers	Shearing, tearing	All types of municipal wastes.
8.	Hammer mills	Breaking, tearing, cutting, crushing	All types of municipal wastes. Most commonly used equipment for reducing size and homogenizing composition of wastes

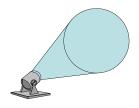
Vertical Hammer Mill Used for Size Reduction of Solid Wastes

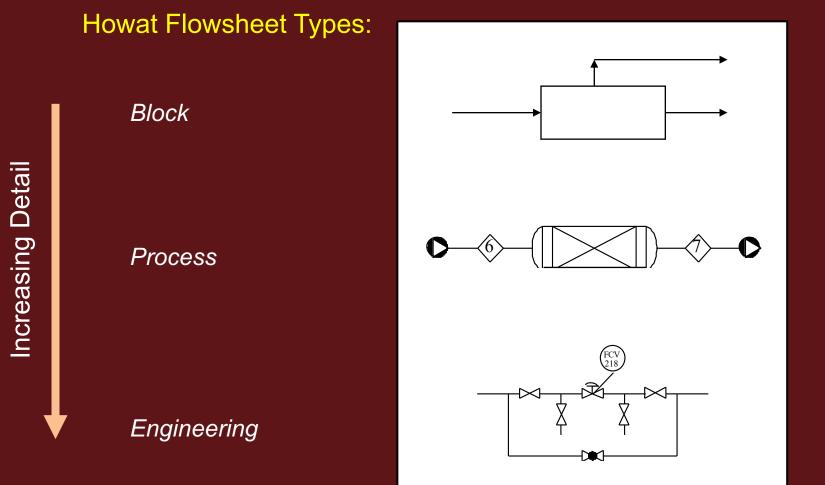


Unit Operation: Solid Separation

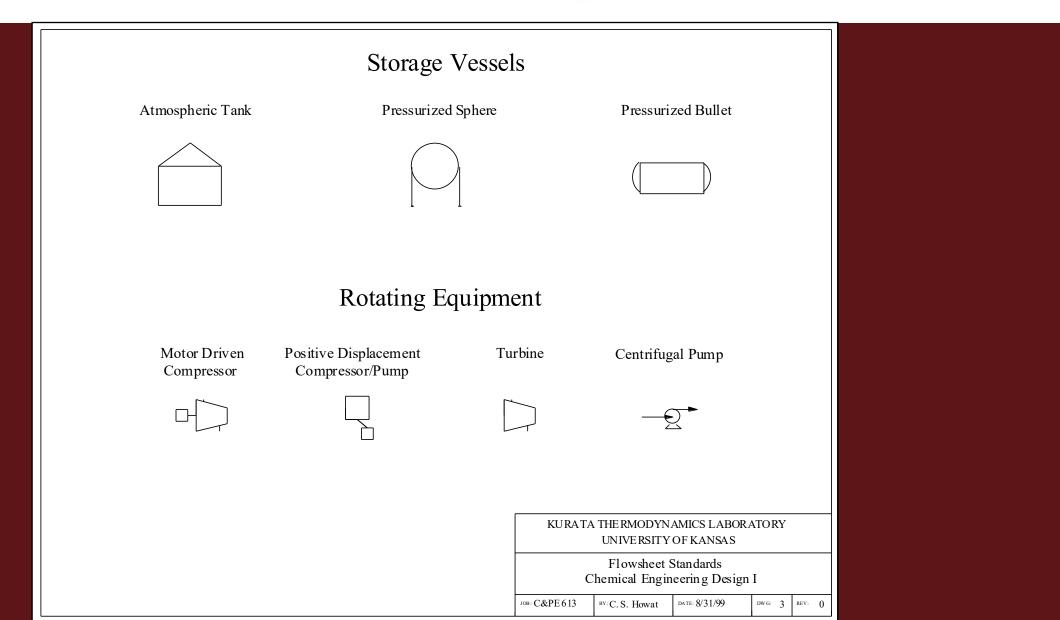
Types of screens in use in the solid waste sector




Flowsheets are the pictorial representation of the process.

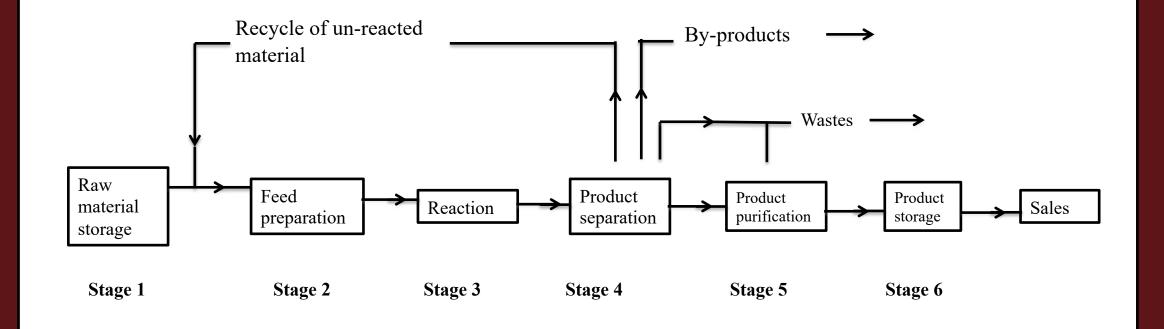

Goal:

Transmit the most amount of information with the least amount of effort on the part of the reader!



Chemical Engineering Practice

	Stream Symbols					
Battery Limits	Stream Break ۲	Valv		Control V हि		
Stream Number	Pressure (psig)	Temp (F	erature)	Liquid (gpm >		
Mass Flowrate (lb/hr)	Heat Exchanger Duty (MBtu/hr)	Gas Vol Flowrate		Liquid (bbl/d >		
Line Arrow ►	(metre units cur de substituteu)		KURA TA THE RMODYN AMICS LABOR ATORY UNIVE RSITY OF KANSAS Flowsheet Standards Chemical Engineering Design I JOB: C&PE 613 BY: C. S. Howat			


	Heat Excha	angers		
	Examples of Shell and T	ube Heat Exchangers		
Kettle Reboiler	Fired Heater	Aircooler	Jacket	
		UNIVE	IODYNAMICS LABORATORY ERSITY OF KANSAS vsheet Standards I Engineerin g Design I	
		JOB: C&PE 613 ВУ: С. S.		

	Process Vessels							
l	Horizontal Vessel	Vertical Vessel	Jacketed Reactor		Packed Reacto			
	Vertical Tower	Extraction Tower	Packed Tower		Trayed To	ower		
				KURA TA THE RMODYN AMICS LABOR ATORY UNIVE RSITY OF KANSA S Flowsheet Standards Chemical Engineering Design I				
			JOB: C&	JOB: C&PE 613 BY: C. S. Howat DATE: 8/31/99 DW.G: 4 REV: 0				

Process Design Components

Main components in a typical process industry

Stage 1: Raw material storage

Unless the raw materials (also called feed stocks or feeds) are supplied as intermediate products (intermediates) from a neighboring plant, some provision will have to be made to hold several days' or weeks' worth of storage to smooth out fluctuations and interruptions in supply. Even when the materials come from an adjacent plant, some provision is usually made to hold a few hours' or even days' worth of inventory to decouple the processes. The storage required depends on the nature of the raw materials, the method of delivery, and what assurance can be placed on the continuity of supply.

Stage 2: Feed preparation

Some purification and preparation of the raw materials will usually be necessary before they are sufficiently pure, or in the right form, to be fed to the reaction stage. Feed contaminants that can poison process catalysts, enzymes, or micro-organisms must be removed. Liquid feeds need to be vaporized before being fed to gas-phase reactors and solids may need crushing, grinding, and screening.

Stage 3: Reaction

The reaction stage is the heart of a chemical manufacturing process. In the reactor the raw materials are brought together under conditions that promote the production of the desired product; almost invariably, some byproducts will also be formed, either through the main reaction, by side reactions, or from reactions of impurities present in the feed.

Stage 4: Product separation

After the reactor(s) the products and byproducts are separated from any un-reacted material. If in sufficient quantity, the unreacted material will be recycled to the reaction stage or to the feed purification and preparation stage. The byproducts may also be separated from the products at this stage. In fine chemical processes there are often multiple reaction steps, each followed by one or more separation steps.

Stage 5: Purification

Before sale, the main product will often need purification to meet the product specifications. If produced in economic quantities, the byproducts may also be purified for sale.

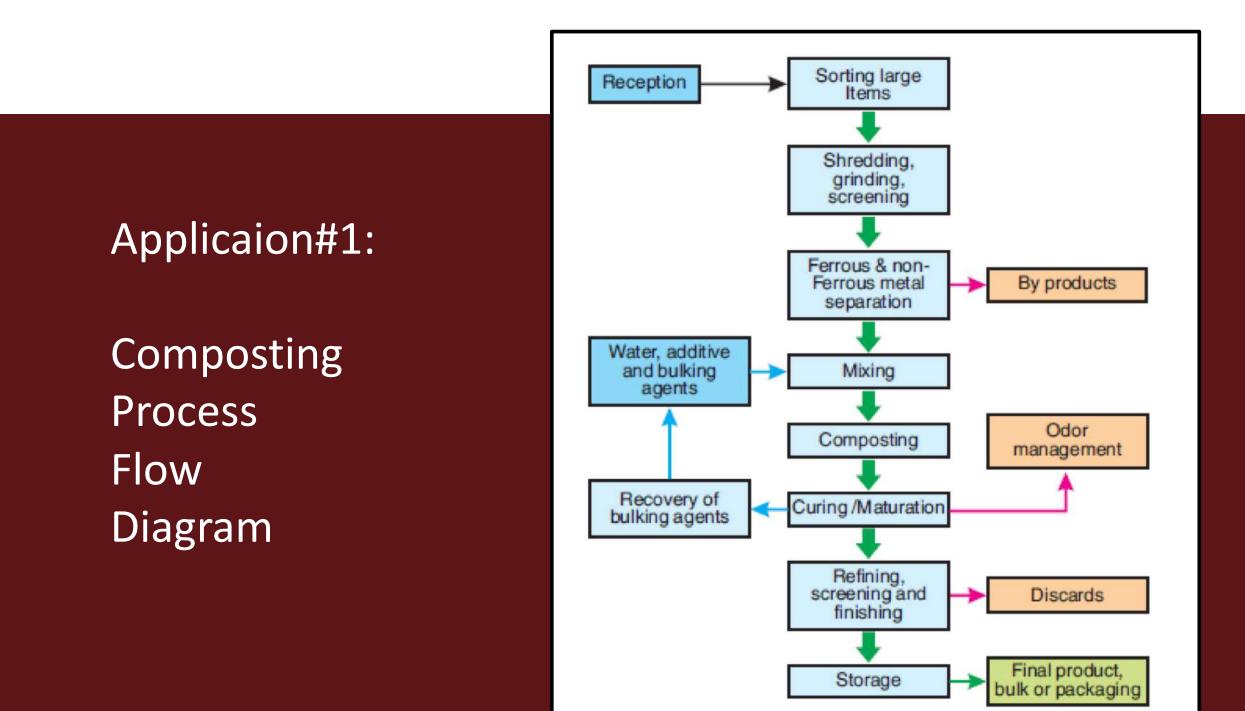
Stage 6: Product storage

Some inventory of finished product must be held to match production with sales. Provision for product packaging and transport is also needed, depending on the nature of the product. Liquids are normally dispatched in drums and in bulk tankers; solids in sacks, cartons, or bales.

Ancillary Processes

In addition to the main process, provision must be made for the supply of the services (utilities) needed, such as process water, cooling water, compressed air, and steam. Facilities are also needed for maintenance, firefighting, offices and other accommodation, and laboratories.

After we decide on the product design, the development of a chemical process plant begins with process design


Phase 1: Process design, which covers the steps from the initial selection of the process to be used, through to the issuing of the process flow sheets and includes the selection, specification, and engineering design of equipment. In a typical organization, this phase is the responsibility of the Process Designer. The process designer may also be responsible for the preparation of the piping and instrumentation diagrams.

Then, we move to plant design

Phase 2: Plant design, including the detailed mechanical design of equipment; the structural, civil, and electrical design; and the specification and design of the ancillary services. These activities will be the responsibility of specialist designer, having expertise in the whole range of engineering disciplines.

Part 3

Applications from the waste recycling industry

Application #2:

Used oil regeneration process flow sheets Go TO: Compendium of used oil regeneration technologies, UNIDO 2003

Application #3:

Flowsheets for the recovery of materials from ewaste

GO TO: Compendium of technologies for the recovery of materials from WEEE, UNEP 2017

Application #4

Converting Waste Plastics into a Resource

UNEP Compendium of technologies, 2009

Application #5

Scrap Tires

Handbook on recycling Applications and management in US and Mexico, EPA 2010

Application #6

Wastes from Food Industries

Waste management for the food industries, Elsevier 2008